OpenFog Releases Landmark Reference Architecture for Fog Computing

OpenFog Releases Landmark Reference Architecture for Fog Computing
Shutterstock

The OpenFog Consortium announces the release of the OpenFog Reference Architecture, a universal technical framework designed to enable the data-intensive requirements of the Internet of Things (IoT), 5G and artificial intelligence (AI) applications. The RA marks a significant first step toward creating the standards necessary to enable high-performance, interoperability and security in complex digital transactions.

Fog computing is the system-level architecture that brings computing, storage, control, and networking functions closer to the data-producing sources along the cloud-to-thing continuum. Applicable across industry sectors, fog computing effectively addresses issues related to security, cognition, agility, latency and efficiency. The Consortium was founded over one year ago to accelerate adoption of fog computing through an open, interoperable architecture.

“Just as TCP/IP became the standard and universal framework that enabled the Internet to take off, members of OpenFog have created a standard and universal framework to enable interoperability for 5G, IoT and AI applications,“ said Helder Antunes, chairman of the OpenFog Consortium and senior director for the Corporate Strategic Innovation Group at Cisco.

The OpenFog Reference Architecture is a high-level framework that will lead to industry standards for fog computing. The OpenFog Consortium is collaborating with standards development organizations such as IEEE to generate rigorous user, functional and architectural requirements, plus detailed application program interfaces (APIs) and performance metrics to guide the implementation of interoperable designs.
The massive and growing amounts of data produced, transported, analyzed and acted upon within industries such as transportation, healthcare, manufacturing and energy, collectively measured in zettabytes, is exposing challenges in cloud-only architectures and operations that reside only at the edge of the network. Fog computing works in conjunction with the cloud and across siloed operations to effectively enable end-to-end IoT, 5G and AI scenarios.  
Current IoT system architectures cannot address the mission critical nature of this data where latency is measured in sub-milliseconds and reliable network availability and bandwidth is crucial. The OpenFog Reference Architecture contains a medium to high-level view of system architectures for fog nodes and networks, deployment and hierarchy models, and use cases. It is part of a suite of technical documents under development by the OpenFog Consortium
The OpenFog Reference Architecture is based on eight core technical principles, termed pillars, which represent the key attributes that a system needs to encompass to be defined as “OpenFog.“  These pillars include security, scalability, openness, autonomy, RAS (reliability, availability, and serviceability), agility, hierarchy and programmability.