Organizations Will Double the Number of AI Projects Within the Next Year

Organizations Will Double the Number of AI Projects Within the Next Year

Foto: Depositphotos

Organizations that are working with AI or machine learning (ML) have, on average, four AI/ML projects in place, according to a recent survey by Gartner. Of all respondents, 59% said that they have AI deployed today.

The Gartner “AI and ML Development Strategies” study was conducted via an online survey in December 2018 with 106 Gartner Research Circle Members, a panel composed of IT and IT/business professionals. Participants were required to be knowledgeable about the business and technology aspects of ML or AI either currently deployed or in planning at their organizations.

“We see a substantial acceleration in AI adoption this year,” said Jim Hare, research vice president at Gartner. “The rising number of AI projects means that organizations may need to reorganize internally to make sure that AI projects are properly staffed and funded. It is a best practice to establish an AI Center of Excellence to distribute skills, obtain funding, set priorities and share best practices in the best possible way.”

Today, the average number of AI projects in place is four, but respondents expect to add six more projects in the next 12 months, and another 15 within the next three years. This means that in 2022, those organizations expect to have an average of 35 AI or ML projects in place.

40% of organizations named CX as their top motivator to use AI technology. While technologies such as chat bots or virtual personal assistants can be used to serve external clients, most organizations (56%) today use AI internally to support decision making and give recommendations to employees. “It is less about replacing human workers and more about augmenting and enabling them to make better decisions faster,” Hare said.

Automating tasks is the second most important project type, named by 20% of respondents as their top motivator. Examples of automation include tasks such as invoicing and contract validation in finance or automated screening and robotic interviews in HR. The top challenges to adopting AI for respondents were a lack of skills (56%), understanding AI use cases (42%), and concerns with data scope or quality (34%).

The survey showed that many organizations use efficiency as a target success measurement when they seek to measure a project’s merit. “Using efficiency targets as a way of showing value is more prevalent in organizations who say they are conservative or mainstream in their adoption profiles. Companies who say they’re aggressive in adoption strategies were much more likely instead to say they were seeking improvements in customer engagement,” said Whit Andrews, distinguished vice president, analyst at Gartner.

More from category

Spending on AR and VR Expected to Reach $18.8 Billion in 2020

Spending on AR and VR Expected to Reach $18.8 Billion in 2020

25 Feb 2020 comment

Worldwide spending on AR/VR is forecast to be $18.8 billion in 2020, an increase of 78.5% over the $10.5 billion, according to IDC.

Global Smartphone Market Remains Stable in 2020

Global Smartphone Market Remains Stable in 2020

25 Feb 2020 comment

Smartphones will again occupy nearly half of the consumer budget for tech and durable goods in 2020 and will generate a total turnover of €444 billion, according to GfK.

Facial Recognition Hardware Will Reach over 800 Million Mobiles by 2024

Facial Recognition Hardware Will Reach over 800 Million Mobiles by 2024

24 Feb 2020 comment

A new report from Juniper Research found that facial recognition hardware will be the fastest growing form of smartphone biometric hardware.